منابع مشابه
Mass, Stiffness, and Damping Matrices from Measured Modal Parameters
The theory of complex mode shapes for damped oscillatory mechanical systems is explained, using the matrix of transfer functions in the Laplace domain. These mode shapes are defined to be the solutions to the homogeneous system equation. It is shown that a complete transfer matrix can be constructed once one row or column of it has been measured, and hence that mass, stiffness, and damping matr...
متن کاملStiffness Matrices for Axial and Bending Deformations of Non-Prismatic Beams with Linearly Varying Thickness
Siffness matrices for axial and bending deformations of a beam having a rectangular cross sectional area of constant width and linearly varying thickness are developed. A consistant load vector for a uniformly distributed lateral load is also calculated, using the principal of potential energy. The matrices are used to obtain numerical results for a variety of beams with non-uniform thickness t...
متن کاملDiagonal Spatial Stiffness Matrices
In this work we study in detail the conditions under which the stiffness matrix of a spatial system can be transformed into block-diagonal and diagonal form. That is the existence of a coordinate frame in which the stiffness matrix takes on these simple forms. The consequences of a block-diagonal or diagonal stiffness matrix for the invariants of the system, principal screws, von Mises’ invaria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIAA Journal
سال: 1965
ISSN: 0001-1452,1533-385X
DOI: 10.2514/3.2874